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ABSTRACT
In ISSAC 2000, P. Lisoněk and R.B. Israel [3] asked whether,
for any given positive real constants V, R,A1, A2, A3, A4,
there are always finitely many tetrahedra, all having these
values as their respective volume, circumradius and four face
areas. In this paper we present a negative solution to this
problem by constructing a family of tetrahedra T(x,y) where
(x, y) varies over a component of a cubic curve such that all
tetrahedra T(x,y) share the same volume, circumradius and
face areas.

Categories and Subject Descriptors: G.0 [General]

General Terms: Algorithms

Keywords: metric invariant, tetrahedron, distance geome-
try, manifold solution.

1. INTRODUCTION
Consider a tetrahedron T = P1P2P3P4 in R3. Let di,j =

d(Pi, Pj) be the distance between vertices Pi and Pj . It is
well known that the volume V of tetrahedron T can be ex-
pressed by the Cayley-Menger determinant associated with
the points Pl(1 ≤ l ≤ 4) as follows:

V 2 =
1

288
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∣∣∣∣∣∣∣∣∣∣
.

For convenience, let M0 denote the above determinant and
Ml the principal minor determinant of M0 obtained by delet-
ing the l-th row and l-th column of M0 for l = 1, · · · , 5.
Then, the circumradius R, i.e., the radius of the sphere cir-
cumscribed to T , can be expressed by di,j in the following
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form:

R2 = − M5

2M0
.

This means that the square of the volume of a tetrahedron is
a polynomial in d 2

i,j with rational coefficients, and the square

of the circumradius is a rational function in d 2
i,j . According

to Heron formula of triangles, the squares of the areas of
four faces of the tetrahedron are also rational polynomials
in d 2

i,j :

A2
l = − 1

16
Ml, l = 1, 2, 3, 4.

Call di,j , V, R,Al the metric invariants of a tetrahedron.
Since Ml can be regarded as polynomials in di,j , we have
6 polynomials connecting these metric invariants:

f1(d1,2, d1,3, · · · , d3,4, V ) = 288V 2 − M0,

f2(d1,2, d1,3, · · · , d3,4, R) = 2M0R
2 + M5,

f3(d1,2, d1,3, · · · , d3,4, A1) = 16A2
1 + M1,

f4(d1,2, d1,3, · · · , d3,4, A2) = 16A2
2 + M2,

f5(d1,2, d1,3, · · · , d3,4, A3) = 16A2
3 + M3,

f6(d1,2, d1,3, · · · , d3,4, A4) = 16A2
4 + M4.

According to a theorem in [1] on embedding a simplex in Rn,
for any given positive real constants V, R, A1, A2, A3, A4,
there exists a tetrahedron T = P1P2P3P4 in R3 such that
PiPj = di,j , whenever there is a solution (d1,2, d1,3, · · · , d3,4)
with di,j > 0 to the system {f1 = 0, f2 = 0, · · · , f6 = 0}.

In [2], a question proposed by M. Mazur asked whether or
not a tetrahedron is uniquely determined by its volume, cir-
cumradius and face areas. P. Lisoněk and R.B. Israel [3] gave
a negative answer to this question by constructing two or
more tetrahedra that share the same volume, circumradius
and face areas, and suggested to discuss whether, for any
positive real constants V, R, A1, A2, A3, A4, there are finitely
many tetrahedra, all having these values as their respective
metric invariants.

In this paper, we present a negative solution to Lisoněk
and Israel’s problem.

2. A MANIFOLD SOLUTION TO THE
METRIC INVARIANT EQUATIONS

Our main result is the following theorem.

Theorem 1. Let

G(x, y) = 3 (1− x)(17− 18y)(1 + 3x + 3y)− 9x2 − 3x− 37,
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g1,2 = 324 (1− y) (1 + y),

g1,3 = 324 (1− x) (1 + x),

g1,4 = (29 − 18x − 18y) (7 + 18x + 18y),

g2,3 = 36 (7− 3x − 3y) (1 + 3x + 3y),

g2,4 = (17 − 18x) (31 + 18x),

g3,4 = (17 − 18y) (31 + 18y),

and

G0 = { (x, y) ∈ R2 | G(x, y) = 0, |x| < 1, |y| < 1}.
Then, for each (ξ, η) ∈ G0, it holds that

g1,2(ξ, η) > 0, g1,3(ξ, η) > 0, · · · , g3,4(ξ, η) > 0,

and there exists a tetrahedron T(ξ,η) with edge-lengths
√

gi,j(ξ, η)
(1 ≤ i < j ≤ 4), whose volume, circumradius and four face
areas are equal to

441,
43
√

3

6
, 84

√
3, 63

√
3, 63

√
3, 63

√
3,

respectively.

One can see that the polynomial G(x, y) is symmetric in x
and y by expanding it. The shape of the semi-algebraic set
G0 looks like a UFO, as shown in Fig. 1. Theorem 1 means
that there are a family of infinitely many tetrahedra which
share the same volume, circumradius and face areas. This
presents a negative answer to Lisoněk and Israel’s question.
To prove the theorem, we need verify the following lemmas.

Lemma 1. It holds for all (ξ, η) ∈ G0 that

−1

2
< ξ <

3

4
, −1

2
< η <

3

4
,

where G0 is defined in Theorem 1.

Proof of Lemma 1: The set G0 is not empty since(
1

4
+

√
2

3
,

1

4
−
√

2

3

)
∈ G0.

The curve G(x, y) = 0 does not intersect either of the lines
x = 1, x = −1, y = 1, y = −1 because none of G(1, y),
G(−1, y),G(x, 1), G(x,−1) has a real zero. So G0 is com-
pact. For all (ξ, η) ∈ G0, the maximum and minimum of ξ
both are real zeros of the polynomial obtained by eliminat-
ing η from G(ξ, η) and ∂

∂η
G(ξ, η), that is,

324 ξ3 + 576 ξ2 − 275 ξ − 233,

which has only 2 real zeros in (−1, 1) as follows,

−0.48681 · · · , 0.73069 · · · .

So we have −1

2
< ξ <

3

4
, analogously, −1

2
< η <

3

4
.

Lemma 2. It holds for all (ξ, η) ∈ G0 that

gi,j(ξ, η) > 0, (1 ≤ i < j ≤ 4)

where G0 and gi,j are defined in Theorem 1.

Proof of Lemma 2: The first two inequalities

g1,2(ξ, η) = 324 (1− η) (1 + η) > 0,

g1,3(ξ, η) = 324 (1− ξ) (1 + ξ) > 0

are trivial since |ξ| < 1 and |η| < 1.
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The last two,

g2,4(ξ, η) = (17 − 18 ξ) (31 + 18 ξ) > 0,

g3,4(ξ, η) = (17 − 18 η) (31 + 18 η) > 0,

also hold because |ξ| <
3

4
, |η| <

3

4
, by Lemma 1. Next,

observe that −9x2−3x−37, the sum of the last three terms
of G(x, y), is always negative, whenever G(x, y) = 0, the
following inequality holds:

3 (1− x)(17− 18y)(1 + 3x + 3y) > 0.

We have known (1− ξ)(17− 18η) > 0 for (ξ, η) ∈ G0, hence
1 + 3ξ + 3η > 0, and then

g2,3(ξ, η) = 36 (7− 3ξ − 3η)(1 + 3ξ + 3η) > 0.

Furthermore, 1+3ξ +3η > 0 implies 7+18ξ +18η > 0 and

that |ξ| <
3

4
and |η| <

3

4
imply 29 − 18ξ − 18η > 0, so we

have

g1,4(ξ, η) = (29 − 18ξ − 18η)(7 + 18ξ + 18η) > 0.

This completes the proof of Lemma 2.

Lemma 3. The assignment { di,j =
√

gi,j(ξ, η), (1 ≤ i <

j ≤ 4), V = 441, R =
43
√

3

6
, A1 = 84

√
3, A2 = 63

√
3, A3 =

63
√

3, A4 = 63
√

3 } solves the system { f1, f2, f3, f4, f5, f6}
for every (ξ, η) ∈ G0.

This is simple, just recall G(ξ, η) = 0 on doing substitution.

Proof of Theorem 1: Denote the Cartesian coordinates
to be determined of the vertices P1, P2, P3, P4 by

( 0, 0, 0 ), (x1, 0, 0 ), (x2, x3, 0 ), (x4, x5, x6),

respectively. Since d 2
i,j = gi,j(ξ, η), we have

x2
1 = 324 (1 − η)(1 + η)

x2
2 + x2

3 = 324 (1− ξ)(1 + ξ)

x2
4 + x2

5 + x2
6 = (29 − 18ξ − 18η)(7 + 18ξ + 18η)

(x1 − x2)
2 + x2

3 = 36 (7− 3ξ − 3η)(1 + 3ξ + 3η)

(x1 − x4)
2 + x2

5 + x2
6 = (17 − 18ξ)(31 + 18ξ)

(x2 − x4)
2 + (x3 − x5)

2 + x2
6 = (17− 18η)(31 + 18η).
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Solve the equation system for {x1, x2, · · · , x6} and receive a
manifold solution:

x1 = 18
√

(1− η)(1 + η),

x2 =
11 − 18ξ − 18η + 18ξη√

(1− η)(1 + η)
,

x3 =
7
√

3√
(1 − η)(1 + η)

,

x4 =
18ξ + 11η − 18ξη − 18η2√

(1− η)(1 + η)
,

x5 =
7
√

3 η√
(1 − η)(1 + η)

,

x6 = 7
√

3,

where (ξ, η) ranges over

G0 = { (x, y) ∈ R2 | G(x, y) = 0, |x| < 1, |y| < 1}.
Thus, we obtain a family of tetrahedra T(ξ,η) with vertices:

P1 = ( 0, 0, 0 ),

P2 = (18
√

(1 − η)(1 + η), 0, 0 ),

P3 =

(
11 − 18ξ − 18η + 18ξη√

(1 − η)(1 + η)
,

7
√

3√
(1− η)(1 + η)

, 0

)
,

P4 =

(
18ξ + 11η − 18ξη − 18η2√

(1 − η)(1 + η)
,

7
√

3 η√
(1− η)(1 + η)

, 7
√

3

)
,

which share the same volume, circumradius and face areas,

441,
43
√

3

6
, 84

√
3, 63

√
3, 63

√
3, 63

√
3,

according to Lemma 3. Now, Theorem 1 is proven.

3. CONCLUSION
A negative answer is presented to an open problem pro-

posed in ISSAC 2000 [3]: for any given positive real con-
stants V, R, A1, A2, A3, A4, whether or not there are at most
finitely many tetrahedra, all having these values as their
volume, circumradius and four face areas, respectively. We
construct a family of infinitely many tetrahedra T(x,y) which
all share the same volume, circumradius and four face areas,
whenever (x, y) ranges in a one-dimensional manifold. Our
example, however, is in the case of A2 = A3 = A4.

We conjecture that, for given six positive constants V, R,
A1, A2, A3, A4 where A1, A2, A3, A4 are pairwise distinct,
there are at most nine tetrahedra, all having these values
as their volume, circumradius and four face areas, respec-
tively.

What we discussed in this paper can be regarded as a
generalized problem on geometric constraint solving that
involves not only lengths or angles, but also areas, volumes
and circumradius. See [4] for a recent approach to geometric
constraint solving with distance geometry.
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One of the referee investigated the conjecture raised in the
conclusion using a numerical test at random and always gets
nine solutions, albeit some might not have positive values.
This constitutes a probabilistic “proof” that the generic fi-
nite case has at most nine positive solutions, whenever face
areas are pairwise distinct. Furthermore, the referee made
another observation. In the generic case of nine solutions,
one of them is always observed to give negative values, then
a stronger conjecture would be that there are at most eight
tetrahedra for a given set of parameter values for which only
finitely many exist.

Another referee pointed out that the proofs of Lemma 2
and Theorem 1 could be replaced by alternate ones as fol-
lows. Since the set G0 is compact, Lemma 2 can be proved
by showing that none of the six systems of equations {G = 0,
gi,j = 0} ( for 1 ≤ i < j ≤ 4 ) has a real solution in the

range −1

2
≤ x, y ≤ 3

4
, and then observing that, there is a

point (x0, y0) in G0 such that gi,j(x0, y0) > 0 for all i, j,
(1 ≤ i < j ≤ 4). Moreover, the final part of the proof of
Theorem 1 could be simplified by appealing to a theorem in
Section 40 of Blumenthal’s book [1]. That theorem implies
that the tetrahedron exists if and only if all the squared vol-
umes V 2, A2

1, A
2
2, A

2
3, A

2
4 have positive values, which there-

fore is not only necessary but also sufficient condition for
existence of the tetrahedron.

5. REFERENCES

[1] L.M. Blumenthal, Theory and Applications of
Distance Geometry, Chelsea, New York, 1970.

[2] Problem 10717 (proposed by M. Mazur), Amer. Math.
Monthly 106 (February 1999), 167.
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